Heat Sinks since 1991

  • +39 0444 551224
  • Tre-s Italiano
  • Tre-s English
Profili a ''T'' - Standard Profiles
Profili a ''T'' - Standard Profiles

Code: Profili a ''T''
Standard Profiles

Lega BxS Dimensione Peso al metro
6060 10x10x1,5 0,073
6060 15x15x1,5 0,116
6060 15x15x2 0,151
6060 20x20x2 0,205
6060 25x25x2 0,259
6060 30x30x2 0,313
6060 35x35x2 0,367
6060 40x20x2 0,314
6060 40x40x2 0,42
6060 40x40x4 0,821
6060 50x50x3 0,786
6060 50x50x5 1,283
6060 60x60x4 1,252
6060 60x60x6 1,846
Codice KN MAX I F H
Codice KN MAX I F H
Codice KN MAX I F H
Codice KN MAX I F H
Codice KN MAX I F H
Codice KN MAX I F H

Length: 0.00 mm

Weight: 0.00 kg/m

Weight A: 0.00 kg/m

Weight B: 0.00 kg/m

Height: 0.00 mm


Forced ventilation:

Rt:

Sample length: 0.00mm

Applied power: 0.00W

Vel. Fan: 0.00m/s

Natural ventilation:

Rt

Sample width: 0.00mm

Applied power: 0.00W

Profili a ''T'' - Standard Profiles


Within this catalog, heat sinks are organized based on their shape and dimensions expressed in millimeters. Each profile is characterized by the following parameters:

  • Weight: expressed in kilograms per meter of profile length (Kg/m).
  • Length: indicated in millimeters and used for calculating thermal resistance (L).
  • Width: also in millimeters, considered for calculating thermal resistance (°C/W), applicable only to high-efficiency heat sinks.
  • Thermal Resistance in Natural Convection: expressed in °C/W with a temperature difference of 70°C (compared to an ambient temperature of 25°C).
  • Thermal Resistance in Forced Convection: also expressed in °C/W, with an air velocity of 3 m/s and a temperature difference of 50°C.

The values of thermal resistance have been determined through a thermal simulation program designed to replicate realistic conditions. In particular:

  • The heat source is uniformly distributed over approximately 50% of the dissipation surface, with central positioning on the heat sink.
  • To maximize natural convection heat dissipation efficiency, the heat sink is designed with vertical fins. For horizontal installations, it is advisable to consider an increase of approximately 20% in thermal resistance.
  • The surface of the heat sink is not subject to additional treatments.

Regarding black anodized heat sinks in natural convection, the thermal resistance is reduced by approximately 10%.

As the length of the heat sink increases, the thermal resistance decreases following a nonlinear law. The indicated values refer to the specified lengths; for different lengths, consult the “Length Correction Factor” graph to calculate the multiplication factor to be applied to the thermal resistance, both in natural and forced convection.

Quotation request
Request curves
Questo sito web utilizza i cookies per migliorare l'esperienza dell'utente. L'utente è consapevole del fatto che, se naviga sul nostro sito web, implicitamente accetta l'utilizzo dei cookies.